Monday, December 23, 2019

Primary Education Of Upper Class Children - 872 Words

Primary education of upper-class children in colonial days included reading, writing, basic math, poems, and prayers. Education was provided for white students only and was privately taught: the purpose was to prepare children for their eventual roles in plantation life. During this time while males studied advanced academic subjects, the females learned to assume the role of the mistress of a plantation. It was not until the 1840s that an organized system existed. Education reformers like Thomas Jefferson with the common school, John Dewey with progressive education and E.D Hirsch with cultural literacy, who with their contributions helped shape the educational system we have today. Thomas Jefferson, the â€Å"Man of the People,† is best known for drafting the Declaration of Independence, but he also wrote prolifically and prophetically about education. â€Å"If a nation expects to be ignorant and free, in a state of civilization, it expects what never was and never will be,† he wrote in a letter to a friend. Common school advocates like Jefferson worked to establish a free elementary education accessible to everyone and financed by public funds. Jefferson understood that freedom depends on self-government and that education contributes to both the knowledge and virtues that form a self-governing citizen. Jefferson sought to teach â€Å"all children of the state reading, writing, and common arithmetic.† Jefferson viewed this basic education as instrumental in securing â€Å"life, liberty, andShow MoreRelatedRace and Social Inequality in Education1382 Words   |  6 PagesMajor social institutions affect society, humanity, and prosperity in different ways. Education is a social institution that affects an individual’s â€Å"economic success and social progression (Wright 1368). Throughout today’s society, the level of education that an individual acquires has a large impact on the amount of employment opportunities, job security, and wages that are attained. According to a 2006 study by the U.S. Census Bureau, the average salary for college or university graduatesRead MoreIndia s Second Largest Population1399 Words   |  6 Pageswhich will be the future of India, henceforth quality education, nourishment and exposure right from primary and upper primary. In order to overcome such challenges government of India came up with the scheme of midday meal scheme. Midday meal scheme serves nutritious to the school age children nationwide. The programme supplies free lunch to all students from in government primary, upper primary, local bodies, and Alternate Innovative Education Centres, Madarsa, Maqtabs, supported under Sarva ShikshaRead MoreMarxist vs Functionalist View of Ed815 Words   |  4 PagesCOMPARE AND CONTRAST THE FUNCTIONALIST AND MARXIST VI EWS ON EDUCATION (20 marks) The role of education is to educate individuals within society and to prepare them for working life, also to integrate individuals and teach them the norms, values and roles within society. Functionalism and Marxism are the two main perspectives which will be studied; Marxism is a structural conflict sociological theory whereas functionalism is a structural consensus sociological theory. Functionalism sees societyRead MoreThe Effects Of Post Colonialism On Social Mobility Essay1276 Words   |  6 PagesBack in the days when the effect of post-colonialism was still real, education was only affordable to the whites and the upper-class families. This brought about the hierarchy of power where the wealthy capitalist accessed first class education for their children, and basically excluding the low-class children from this system of education (Croxford 372). This, therefore, leads to inequality to social mobility, where the lower class members have less opportunity for social mobility. Mainly due to theRead MoreEssay about The German Education System693 Words   |  3 PagesThe German education system focuses within the states therefore the responsibility lies solely on the states. The Federal Government plays a minor role in the education system and it begins with all children aged between two and six attending optional Kindergarten after which school attendance is com pulsory. Similarly in Sweden the public educational system is divided into two; the compulsory and non-compulsory system. Education in the public sector is free and no fee is required from teachers orRead MoreGovernesses Represented An Unusual Social Class Essay1552 Words   |  7 Pages Governesses represented an unusual social class in Victorian culture. They were often women belonging to the middle class, however, they had a central role in the upbringing of upper class children and the construction of Victorian education and ideals. Despite their significance within the homes of wealthy families, many governesses were treated with suspicion and fear. This paper, however, seeks to analyze several notable governess representations as well as to understand how these variousRead MoreExploring the Conditions Purposes of Public Schools: Are Schools Simply Used to Create a Well-Trained or Well-Educated Workforce?811 Words   |  4 Pagesconditions of public schools, but also wha t their primary purpose should be. After having read several articles on the inequalities of schools I would have to say, using Jean Anyons terms, that the affluent-professional and executive elite truly benefit most from public schooling. In terms of social class, its the talented tenth of society which is involved in discovery, hands on experimentation, and higher concept learning. These upper-crust schools are the ones which push intellectualRead MoreSocial Class And Social Classes909 Words   |  4 Pagesclasses play a vital role in dynamic of families. The definition of social class is ambiguous and has no clearly outlined definition. However it is believed to be a combination of different aspects such as one’s life chances or resources, one’s status group, or those who share similar lifestyles and one’s education level make up an individuals social class. Therefore, in an ideal set up there would 4 social cases the upper, middle, working, and poor classes (Judge 2015) and these are the 4 t hat IRead MoreClass Conflict1431 Words   |  6 Pagesextent to which class conflict affects education and life opportunities. The following paragraphs seek to illustrate how factors such as class position and parental attitudes affect education and life opportunities among different social classes and the conflict that lies between them. In order to understand the content of this essay it is first necessary to understand all of the possible variables involved. Throughout this essay I will examine the definitions of class, conflict, education and opportunityRead MoreIndi The Country Of India1304 Words   |  6 Pages Travis Norwood Political Science 290 9/29/2014 Education in India The country of India gained independence in 1947 and has seen many changes since then. Education happens to be one those changes. Education had been an ongoing problem for a while in India. Only recently has India seen improvements concerning its education system. Multiple education policies and reforms have helped more and more of India’s youth become educated. With India being one of the world’s largest

Sunday, December 15, 2019

Tsunami and Love Canal Free Essays

A  tsunami  (‘harbor wave’) or  tidal wave  is a series of water waves (called a  tsunami wave train) caused by the displacement of a large volume of a body of water, usually an ocean, but can occur in  large lakes. Tsunamis are a frequent occurrence in Japan; approximately 195 events have been recorded. Due to the immense volumes of water and energy involved, tsunamis can devastate coastal regions. We will write a custom essay sample on Tsunami and Love Canal or any similar topic only for you Order Now Earthquakes,  volcanic eruptions  and other  underwater explosions  (including detonations of underwater  nuclear devices), landslides  and other  mass movements,  meteorite ocean impacts or similar impact events, and other disturbances above or below water all have the potential to generate a tsunami. The  Greek  historian  Thucydides  was the first to relate tsunami to  submarine earthquakes,  but understanding of tsunami’s nature remained slim until the 20th century and is the subject of ongoing research. Many early  geological,  geographical, and oceanographic  texts refer to tsunamis as â€Å"seismic sea waves. CHARACTERISTICS: While everyday  wind waves  have a  wavelength  (from crest to crest) of about 100  meters (330 ft) and a height of roughly 2  meters (6. 6 ft), a tsunami in the deep ocean has a wavelength of about 200  kilometers (120 mi). Such a wave travels at well over 800  kilometers per hour (500 mph), but d ue to the enormous wavelength the wave oscillation at any given point takes 20 or 30 minutes to complete a cycle and has amplitude of only about 1  meter (3. 3 ft). This makes tsunamis difficult to detect over deep water. Ships rarely notice their passage. As the tsunami approaches the coast and the waters become shallow,  wave shoaling  compresses the wave and its velocity slows below 80  kilometers per hour (50 mph). Its wavelength diminishes to less than 20  kilometers (12 mi) and its amplitude grows enormously, producing a distinctly visible wave. Since the wave still has such a long wavelength, the tsunami may take minutes to reach full height. Except for the very largest tsunamis, the approaching wave does not break (like a  surf break), but rather appears like a fast moving  tidal bore. Open bays and coastlines adjacent to very deep water may shape the tsunami further into a step-like wave with a steep-breaking front. When the tsunami’s wave peak reaches the shore, the resulting temporary rise in sea level is termed ‘run up’. Run up is measured in meters above a reference sea level. A large tsunami may feature multiple waves arriving over a period of hours, with significant time between the wave crests. The first wave to reach the shore may not have the highest run up. About 80% of tsunamis occur in the Pacific Ocean, but are possible wherever there are large bodies of water, including lakes. They are caused by earthquakes, landslides, volcanic explosions, and  bolides. GENERATION MECHANISMS: The principal generation mechanism (or cause) of a tsunami is the displacement of a substantial volume of water or perturbation of the sea. This displacement of water is usually attributed to earthquakes, landslides, volcanic eruptions, or more rarely by meteorites and nuclear tests. The waves formed in this way are then sustained by gravity. It is important to note that  tides  do not play any part in the generation of tsunamis; hence referring to tsunamis as ‘tidal waves’ is inaccurate. Seismicity generated tsunamis Tsunamis can be generated when the sea floor abruptly deforms and vertically displaces the overlying water. Tectonic earthquakes are a particular kind of earthquake that are associated with the earth’s crustal deformation; when these earthquakes occur beneath the sea, the water above the deformed area is displaced from its equilibrium position. More specifically, a tsunami can be generated when  thrust faults  associated with  convergent  or destructive  plate boundaries  move abruptly, resulting in water displacement, due to the vertical component of movement involved. Movement on normal faults will also cause displacement of the seabed, but the size of the largest of such events is normally too small to give rise to a significant tsunami. |[pic] |[pic] |[pic] |[pic] | |Drawing of  tectonic plate |Overriding plate bulges under |Plate slips, causing |The energy released produces | |boundary  before earthquake. |strain, causing tectonic uplift. |subsidence  and releasing energy |tsunami waves. | | | |into water. | Tsunamis have a small  amplitude  (wave height) offshore, and a very long  wavelength  (often hundreds of kilometers long), which is why they generally pass unnoticed at sea, forming only a slight swell usually about 300  millimeters (12 in) above the normal sea surface. They grow in height when they reach shallower water, in a  wave shoaling  process described below. A tsunami can occur in any tidal state and even at low tide can still inundate coastal areas. On April 1, 1946, a magnitude-7. 8 (Richter scale)  earthqu ake  occurred near the  Aleutian Islands,  Alaska. It generated a tsunami which inundated  Hilo  on the island of Hawaii’s with a 14  meters (46 ft) high surge. The area where the  earthquake  occurred is where the  Pacific Ocean  floor is  subducting  (or being pushed downwards) under  Alaska. Examples of tsunami at locations away from  convergent boundaries  include  Storegga  about 8,000 years ago,  Grand Banks  1929,  Papua New Guinea  1998 (Tappin, 2001). The Grand Banks and Papua New Guinea tsunamis came from earthquakes which destabilized sediments, causing them to flow into the ocean and generate a tsunami. They dissipated before traveling transoceanic distances. The cause of the Storegga sediment failure is unknown. Possibilities include an overloading of the sediments, an earthquake or a release of gas hydrates (methane etc. ) The  1960 Valdivia earthquake  (Mw  9. 5) (19:11 hrs UTC),  1964 Alaska earthquake  (Mw  9. 2), and  2004 Indian Ocean earthquake  (Mw  9. 2) (00:58:53 UTC) are recent examples of powerful mega thrust  earthquakes that generated tsunamis (known as  teletsunamis) that can cross entire oceans. Smaller (Mw  4. 2) earthquakes in Japan can trigger tsunamis (called  local  and regional tsunamis) that can only devastate nearby coasts, but can do so in only a few minutes. In the 1950s, it was discovered that larger tsunamis than had previously been believed possible could be caused by giant  landslides. These phenomena rapidly displace large water volumes, as energy from falling debris or expansion transfers to the water at a rate faster than the water can absorb. Their existence was confirmed in 1958, when a giant landslide in Lituya Bay,  Alaska, caused the highest wave ever recorded, which had a height of 524 meters (over 1700 feet). The wave didn’t travel far, as it struck land almost immediately. Two people fishing in the bay were killed, but another boat amazingly managed to ride the wave. Scientists named these waves  mega tsunami. Scientists discovered that extremely large landslides from volcanic island collapses can generate  mega tsunami that can travel trans-oceanic distances. SCALES OF INTENSITY AND MAGNITUDE: As with earthquakes, several attempts have been made to set up scales of tsunami intensity or magnitude to allow comparison between different events. Intensity scales The first scales used routinely to measure the intensity of tsunami were the  Sieberg-Ambraseys scale, used in the  Mediterranean Sea  and the  Imamura-Iida intensity scale, used in the Pacific Ocean. The latter scale was modified by Soloviev, who calculated the Tsunami intensity  I  according to the formula [pic] Where  Hav  is the average wave height along the nearest coast. This scale, known as the  Soloviev-Imamura tsunami intensity scale, is used in the global tsunami catalogues compiled by the  NGDC/NOAA  and the Novosibirsk Tsunami Laboratory as the main parameter for the size of the tsunami. Magnitude scales The first scale that genuinely calculated a magnitude for a tsunami, rather than an intensity at a particular location was the ML scale proposed by Murty Loomis based on the potential energy. Difficulties in calculating the potential energy of the tsunami mean that this scale is rarely used. Abe introduced the  tsunami magnitude scale  Mt, calculated from, [pic] where  h  is the maximum tsunami-wave amplitude (in m) measured by a tide gauge at a distance  R  from the epicenter,  a,  b  Ã‚  D  are constants used to make the Mt  scale match as closely as possible with the moment magnitude scale. WARNINGS AND PREDICTIONS: Drawbacks can serve as a brief warning. People who observe drawback (many survivors report an accompanying sucking sound), can survive only if they immediately run for high ground or seek the upper floors of nearby buildings. In 2004, ten-year old  Tilly Smith  of  Surrey,  England, was on  Maikhao beach  in  Phuket,  Thailand  with her parents and sister, and having learned about tsunamis recently in school, told her family that a tsunami might be imminent. Her parents warned others minutes before the wave arrived, saving dozens of lives. She credited her geography teacher, Andrew Kearney. In the  2004 Indian Ocean tsunami  drawback was not reported on the African coast or any other eastern coasts it reached. This was because the wave moved downwards on the eastern side of the fault line and upwards on the western side. The western pulse hit coastal Africa and other western areas. A tsunami cannot be precisely predicted, even if the magnitude and location of an earthquake is known. Geologists,  oceanographers, and seismologists  analyze each earthquake and based on many factors may or may not issue a tsunami warning. However, there are some warning signs of an impending tsunami, and automated systems can provide warnings immediately after an earthquake in time to save lives. One of the most successful systems uses bottom pressure sensors that are attached to buoys. The sensors constantly monitor the pressure of the overlying water column. This is deduced through the calculation: [pic] Where, P  = the overlying  pressure  in Newton per meter square, ? = the  density  of the  seawater = 1. 1 x 103  kg/m3, g  = the  acceleration due to gravity = 9. 8 m/s2  and h  = the height of the water column in meters. Hence for a water column of 5,000 m depth the overlying pressure is equal to [pic] Or about 5500  tonnes-force  per square meter. Regions with a high tsunami risk typically use  tsunami warning systems  to warn the population before the wave reaches land. On the west coast of the United States, which is prone to Pacific Ocean tsunami, warning signs indicate evacuation routes. In Japan, the community is well-educated about earthquakes and tsunamis, and along the Japanese shorelines the tsunami warning signs are reminders of the natural hazards together with a network of warning sirens, typically at the top of the cliff of surroundings hills. The  Pacific Tsunami Warning System  is based in  Honolulu,  Hawaii. It monitors Pacific Ocean seismic activity. A sufficiently large earthquake magnitude and other information trigger a tsunami warning. While the seduction zones around the Pacific are seismically active, not all earthquakes generate tsunami. Computers assist in analyzing the tsunami risk of every earthquake that occurs in the Pacific Ocean and the adjoining land masses. |[pic] |[pic] |[pic] |[pic] | |Tsunami hazard sign |A tsunami warning sign on |The monument to the victims of |Tsunami memorial | |atBamfield,  British Columbia |a  seawall  in  Kamakura, Japan, |tsunami at Laupahoehoe,  Hawaii |inKanyakumari  beach | | |2004. | | | As a direct result of the Indian Ocean tsunami, a re-appraisal of the tsunami threat for all coastal areas is being undertaken by national governments and the United Nations Disaster Mitigation Committee. A tsunami warning system is being installed in the Indian Ocean. Computer models can predict tsunami arrival, usually within minutes of the arrival time. Bottom pressure sensors relay information in real time. Based on these pressure readings and other seismic information and the seafloor’s shape and coastal  topography, the models estimate the amplitude and surge height of the approaching tsunami. All Pacific Rim countries collaborate in the Tsunami Warning System and most regularly practice evacuation and other procedures. In Japan, such preparation is mandatory for government, local authorities, emergency services and the population. Some zoologists hypothesize that some animal species have an ability to sense subsonic  Rayleigh waves  from an earthquake or a tsunami. If correct, monitoring their behavior could provide advance warning of earthquakes, tsunami etc. However, the evidence is controversial and is not widely accepted. There are unsubstantiated claims about the Lisbon quake that some animals escaped to higher ground, while many other animals in the same areas drowned. The phenomenon was also noted by media sources in  Sri Lanka  in the  2004 Indian Ocean earthquake. [21][22]  It is possible that certain animals (e. g. ,  elephants) may have heard the sounds of the tsunami as it approached the coast. The elephants’ reaction was to move away from the approaching noise. By contrast, some humans went to the shore to investigate and many drowned as a result. It is not possible to prevent a tsunami. However, in some tsunami-prone countries some  earthquake engineering  measures have been taken to reduce the damage caused on shore. Japan  built many tsunami walls of up to 4. 5  metres (15 ft) to protect populated coastal areas. Other localities have built  floodgates  and channels to redirect the water from incoming tsunami. However, their effectiveness has been questioned, as tsunami often overtop the barriers. For instance, the  Okushiri, Hokkaido tsunami  which struck  Okushiri Island  of  Hokkaido  within two to five minutes of the  earthquake on July 12, 1993  created waves as much as 30  metres (100 ft) tall—as high as a 10-story building. The port town of Aonae was completely surrounded by a tsunami wall, but the waves washed right over the wall and destroyed all the wood-framed structures in the area. The wall may have succeeded in slowing down and moderating the height of the tsunami, but it did not prevent major destruction and loss of life. [23] Natural factors such as shoreline tree cover can mitigate tsunami effects. Some locations in the path of the 2004 Indian Ocean tsunami escaped almost unscathed because trees such as  coconut palms  and  mangroves  absorbed the tsunami’s energy. In one striking example, the village of  Naluvedapathy  in India’s  Tamil Nadu  region suffered only minimal damage and few deaths because the wave broke against a forest of 80,244 trees planted along the shoreline in 2002 in a bid to enter the  Guinness Book of Records. [24]  Environmentalists have suggested tree planting along tsunami-prone seacoasts. Trees require years to grow to a useful size, but such plantations could offer a much cheaper and longer-lasting means of tsunami mitigation than artificial barriers. The Love Canal chemical waste dump In 1920 Hooker Chemical had turned an area in Niagara Falls into a municipal and chemical disposal site. In 1953 the site was filled and relatively modern methods were applied to cover it. A thick layer of impermeable red clay sealed the dump, preventing chemicals from leaking out of the landfill. A city near the dumpsite wanted to buy it for urban expansion. Despite the warnings of Hooker the city eventually bought the site for the meager amount of 1 dollar. Hooker could not sell for more, because they did not want to earn money off a project so clearly unwise. The city began to dig to develop a sewer, damaging the red clay cap that covered the dumpsite below. Blocks of homes and a school were built and the neighborhood was named Love Canal. Love Canal seemed like a regular neighborhood. The only thing that distinguished this neighborhood from other was the strange odors that often hung in the air and an unusual seepage noticed by inhabitants in their basements and yards. Children in the neighborhood often fell ill. Love Canal families regularly experienced miscarriages and birth defects. Lois Gibbs, an activist, noticed the high occurrence of illness and birth defects in the area and started documenting it. In 1978 newspapers revealed the existence of the chemical waste dump in the Love Canal area and Lois Gibbs started petitioning for closing the school. In August 1978, the claim succeeded and the NYS Health Department ordered closing of the school when a child suffered from chemical poisoning. When Love Canal was researched over 130 pounds of the highly toxic carcinogenic TCDD, a form of dioxin, was discovered. The total of 20. 00 tons of waste present in the landfill appeared to contain more than 248 different species of chemicals. The waste mainly consisted of pesticide residues and chemical weapons research refuse. The chemicals had entered homes, sewers, yards and creeks and Gibbs decided it was time for the more than 900 families to be moved away from the location. Eventually President Carter provided funds to move all the families to a safer area. Hooker†™s parent company was sued and settled for 20 million dollars. Despite protests by Gibbs’s organization some of the houses in Love Canal went up for sale some 20 years later. The majority of the houses are on the market now and the neighborhood may become inhabited again after 20 years of abandonment. The houses in Love Canal are hard to sell, despite a renaming of the neighborhood. It suffered such a bad reputation after the incident that banks refused mortgages on the houses. None of the chemicals have been removed from the dumpsite. It has been resealed and the surrounding area was cleaned and declared safe. Hooker’s mother company paid an additional 230 million dollars to finance this cleanup. They are now responsible for the management of the dumpsite. Today, the Love Canal dumpsite is known as one of the major environmental disasters of the century. **** Love Canal is an abandoned canal in Niagara County, New York, where a huge amount of toxic waste was buried. The waste was composed of at least 300 different chemicals, totaling an estimated 20,000 metric tons. The existence of the waste was discovered in the 1970s when families living in homes subsequently built next to the site found chemical wastes seeping up through the ground into their basements, forcing them to eventually abandon their homes. Love Canal was used from the 1940s through the 1950s by the Hooker Chemical Company and the city of Niagara Falls, among others, to dispose of their hazardous and municipal wastes and other refuse. The canal was surrounded by clay and was thought at the time to be a safe place for disposal—and, in fact, burying chemicals in the canal was probably safer than many other methods and sites used for chemical disposal at the time. In 1953, the Niagara Falls Board of Education bought the land-fill for $1 and constructed an elementary school with playing fields on the site. Roads and sewer lines were added and, in the early 1970s, single-family homes were built adjacent to the site. Following a couple of heavy rains in the mid-1970s, the canal flooded and chemicals were observed on the surface of the site and in the basements of houses abutting the site. Newspaper coverage, investigations by the State of New York and by the U. S. Environmental Protection Agency, combined with pressure from the district’s U. S. congressional representative and outrage on the part of local residents, led to the declaration of a health emergency involving â€Å"great and imminent peril to the health of the general public. Ultimately, in August, 1978, a decision was made by Governor Hugh Carey, supported by the White House, to evacuate the residents and purchase 240 homes surrounding the site. Shortly thereafter, the residents of nearby homes that did not immediately abut the site also became concerned about their health and conducted a health survey that purported to show an increase in the occurrence of various diseases and problems such as birth defects and miscarriages, which were attributed to chemical exposures. A great controversy ensued over whether the observations were real or reflected normal rates of such problems, and whether chemical exposures had, in fact, occurred. Eventually, political pressure resulted in families being given an opportunity to leave and have their homes purchased by the State. About 70 homes remained occupied in 1989 by families who chose not to move. The controversy at Love Canal followed on the heels of the heightened awareness that occurred in the 1960s about environmental contamination, and it contributed to public and regulatory concern about hazardous wastes, waste disposal, and disclosure of such practices. Such concerns led Congress to pass the Resource Conservation and Recovery Act (RCRA) and the Toxic Substances Control Act (TSCA) in 1976, and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), also known as the Superfund bill, in 1980. When CERCLA was passed, few were aware of the extent of the problem potentially created by years of inappropriate or inadequate hazardous waste disposal practices. Since implementing CERCLA, the U. S. Environmental Protection Agency has identified more than 40,000 potentially contaminated â€Å"Superfund† sites. The Gulf War In August 1990 Iraqi forces invaded Kuwait, starting the Gulf War in which an allegiance of 34 nations worldwide was involved. In January  1991  of the Gulf War, Iraqi forces committed two environmental disasters. The first was a major oil spill 16 kilometers off the shore of Kuwait by dumping oil from several tankers and opening the valves of an offshore terminal. The second was the setting fire to 650 oil wells in Kuwait. The apparent strategic goal of the action was to prevent a potential landing by US Marines. American air strikes on January 26 destroyed pipelines to prevent further spillage into the Gulf. This however seemed to make little difference. Approximately one million tons of crude oil was already lost to the environment, making this the largest oil spill of human history. In the spring of 1991, as many as 500 oil wells were still burning and the last oil well was not extinguished until a few months later, in November. The oil spills did considerable damage to life in the Persian Gulf (see picture). Several months after the spill, the poisoned waters killed 20. 000 seabirds and had caused severe damage to local marine flora and fauna. The fires in the oil wells caused immense amounts of soot and toxic fumes to enter the atmosphere. This had great effects on the health of the local population and biota for several years. The pollution also had a possible impact on local weather patterns. How to cite Tsunami and Love Canal, Papers Tsunami and Love Canal Free Essays A  tsunami  (‘harbor wave’) or  tidal wave  is a series of water waves (called a  tsunami wave train) caused by the displacement of a large volume of a body of water, usually an ocean, but can occur in  large lakes. Tsunamis are a frequent occurrence in Japan; approximately 195 events have been recorded. Due to the immense volumes of water and energy involved, tsunamis can devastate coastal regions. We will write a custom essay sample on Tsunami and Love Canal or any similar topic only for you Order Now Earthquakes,  volcanic eruptions  and other  underwater explosions  (including detonations of underwater  nuclear devices), landslides  and other  mass movements,  meteorite ocean impacts or similar impact events, and other disturbances above or below water all have the potential to generate a tsunami. The  Greek  historian  Thucydides  was the first to relate tsunami to  submarine earthquakes,  but understanding of tsunami’s nature remained slim until the 20th century and is the subject of ongoing research. Many early  geological,  geographical, and oceanographic  texts refer to tsunamis as â€Å"seismic sea waves. CHARACTERISTICS: While everyday  wind waves  have a  wavelength  (from crest to crest) of about 100  meters (330 ft) and a height of roughly 2  meters (6. 6 ft), a tsunami in the deep ocean has a wavelength of about 200  kilometers (120 mi). Such a wave travels at well over 800  kilometers per hour (500 mph), but d ue to the enormous wavelength the wave oscillation at any given point takes 20 or 30 minutes to complete a cycle and has amplitude of only about 1  meter (3. 3 ft). This makes tsunamis difficult to detect over deep water. Ships rarely notice their passage. As the tsunami approaches the coast and the waters become shallow,  wave shoaling  compresses the wave and its velocity slows below 80  kilometers per hour (50 mph). Its wavelength diminishes to less than 20  kilometers (12 mi) and its amplitude grows enormously, producing a distinctly visible wave. Since the wave still has such a long wavelength, the tsunami may take minutes to reach full height. Except for the very largest tsunamis, the approaching wave does not break (like a  surf break), but rather appears like a fast moving  tidal bore. Open bays and coastlines adjacent to very deep water may shape the tsunami further into a step-like wave with a steep-breaking front. When the tsunami’s wave peak reaches the shore, the resulting temporary rise in sea level is termed ‘run up’. Run up is measured in meters above a reference sea level. A large tsunami may feature multiple waves arriving over a period of hours, with significant time between the wave crests. The first wave to reach the shore may not have the highest run up. About 80% of tsunamis occur in the Pacific Ocean, but are possible wherever there are large bodies of water, including lakes. They are caused by earthquakes, landslides, volcanic explosions, and  bolides. GENERATION MECHANISMS: The principal generation mechanism (or cause) of a tsunami is the displacement of a substantial volume of water or perturbation of the sea. This displacement of water is usually attributed to earthquakes, landslides, volcanic eruptions, or more rarely by meteorites and nuclear tests. The waves formed in this way are then sustained by gravity. It is important to note that  tides  do not play any part in the generation of tsunamis; hence referring to tsunamis as ‘tidal waves’ is inaccurate. Seismicity generated tsunamis Tsunamis can be generated when the sea floor abruptly deforms and vertically displaces the overlying water. Tectonic earthquakes are a particular kind of earthquake that are associated with the earth’s crustal deformation; when these earthquakes occur beneath the sea, the water above the deformed area is displaced from its equilibrium position. More specifically, a tsunami can be generated when  thrust faults  associated with  convergent  or destructive  plate boundaries  move abruptly, resulting in water displacement, due to the vertical component of movement involved. Movement on normal faults will also cause displacement of the seabed, but the size of the largest of such events is normally too small to give rise to a significant tsunami. |[pic] |[pic] |[pic] |[pic] | |Drawing of  tectonic plate |Overriding plate bulges under |Plate slips, causing |The energy released produces | |boundary  before earthquake. |strain, causing tectonic uplift. |subsidence  and releasing energy |tsunami waves. | | | |into water. | Tsunamis have a small  amplitude  (wave height) offshore, and a very long  wavelength  (often hundreds of kilometers long), which is why they generally pass unnoticed at sea, forming only a slight swell usually about 300  millimeters (12 in) above the normal sea surface. They grow in height when they reach shallower water, in a  wave shoaling  process described below. A tsunami can occur in any tidal state and even at low tide can still inundate coastal areas. On April 1, 1946, a magnitude-7. 8 (Richter scale)  earthqu ake  occurred near the  Aleutian Islands,  Alaska. It generated a tsunami which inundated  Hilo  on the island of Hawaii’s with a 14  meters (46 ft) high surge. The area where the  earthquake  occurred is where the  Pacific Ocean  floor is  subducting  (or being pushed downwards) under  Alaska. Examples of tsunami at locations away from  convergent boundaries  include  Storegga  about 8,000 years ago,  Grand Banks  1929,  Papua New Guinea  1998 (Tappin, 2001). The Grand Banks and Papua New Guinea tsunamis came from earthquakes which destabilized sediments, causing them to flow into the ocean and generate a tsunami. They dissipated before traveling transoceanic distances. The cause of the Storegga sediment failure is unknown. Possibilities include an overloading of the sediments, an earthquake or a release of gas hydrates (methane etc. ) The  1960 Valdivia earthquake  (Mw  9. 5) (19:11 hrs UTC),  1964 Alaska earthquake  (Mw  9. 2), and  2004 Indian Ocean earthquake  (Mw  9. 2) (00:58:53 UTC) are recent examples of powerful mega thrust  earthquakes that generated tsunamis (known as  teletsunamis) that can cross entire oceans. Smaller (Mw  4. 2) earthquakes in Japan can trigger tsunamis (called  local  and regional tsunamis) that can only devastate nearby coasts, but can do so in only a few minutes. In the 1950s, it was discovered that larger tsunamis than had previously been believed possible could be caused by giant  landslides. These phenomena rapidly displace large water volumes, as energy from falling debris or expansion transfers to the water at a rate faster than the water can absorb. Their existence was confirmed in 1958, when a giant landslide in Lituya Bay,  Alaska, caused the highest wave ever recorded, which had a height of 524 meters (over 1700 feet). The wave didn’t travel far, as it struck land almost immediately. Two people fishing in the bay were killed, but another boat amazingly managed to ride the wave. Scientists named these waves  mega tsunami. Scientists discovered that extremely large landslides from volcanic island collapses can generate  mega tsunami that can travel trans-oceanic distances. SCALES OF INTENSITY AND MAGNITUDE: As with earthquakes, several attempts have been made to set up scales of tsunami intensity or magnitude to allow comparison between different events. Intensity scales The first scales used routinely to measure the intensity of tsunami were the  Sieberg-Ambraseys scale, used in the  Mediterranean Sea  and the  Imamura-Iida intensity scale, used in the Pacific Ocean. The latter scale was modified by Soloviev, who calculated the Tsunami intensity  I  according to the formula [pic] Where  Hav  is the average wave height along the nearest coast. This scale, known as the  Soloviev-Imamura tsunami intensity scale, is used in the global tsunami catalogues compiled by the  NGDC/NOAA  and the Novosibirsk Tsunami Laboratory as the main parameter for the size of the tsunami. Magnitude scales The first scale that genuinely calculated a magnitude for a tsunami, rather than an intensity at a particular location was the ML scale proposed by Murty Loomis based on the potential energy. Difficulties in calculating the potential energy of the tsunami mean that this scale is rarely used. Abe introduced the  tsunami magnitude scale  Mt, calculated from, [pic] where  h  is the maximum tsunami-wave amplitude (in m) measured by a tide gauge at a distance  R  from the epicenter,  a,  b  Ã‚  D  are constants used to make the Mt  scale match as closely as possible with the moment magnitude scale. WARNINGS AND PREDICTIONS: Drawbacks can serve as a brief warning. People who observe drawback (many survivors report an accompanying sucking sound), can survive only if they immediately run for high ground or seek the upper floors of nearby buildings. In 2004, ten-year old  Tilly Smith  of  Surrey,  England, was on  Maikhao beach  in  Phuket,  Thailand  with her parents and sister, and having learned about tsunamis recently in school, told her family that a tsunami might be imminent. Her parents warned others minutes before the wave arrived, saving dozens of lives. She credited her geography teacher, Andrew Kearney. In the  2004 Indian Ocean tsunami  drawback was not reported on the African coast or any other eastern coasts it reached. This was because the wave moved downwards on the eastern side of the fault line and upwards on the western side. The western pulse hit coastal Africa and other western areas. A tsunami cannot be precisely predicted, even if the magnitude and location of an earthquake is known. Geologists,  oceanographers, and seismologists  analyze each earthquake and based on many factors may or may not issue a tsunami warning. However, there are some warning signs of an impending tsunami, and automated systems can provide warnings immediately after an earthquake in time to save lives. One of the most successful systems uses bottom pressure sensors that are attached to buoys. The sensors constantly monitor the pressure of the overlying water column. This is deduced through the calculation: [pic] Where, P  = the overlying  pressure  in Newton per meter square, ? = the  density  of the  seawater = 1. 1 x 103  kg/m3, g  = the  acceleration due to gravity = 9. 8 m/s2  and h  = the height of the water column in meters. Hence for a water column of 5,000 m depth the overlying pressure is equal to [pic] Or about 5500  tonnes-force  per square meter. Regions with a high tsunami risk typically use  tsunami warning systems  to warn the population before the wave reaches land. On the west coast of the United States, which is prone to Pacific Ocean tsunami, warning signs indicate evacuation routes. In Japan, the community is well-educated about earthquakes and tsunamis, and along the Japanese shorelines the tsunami warning signs are reminders of the natural hazards together with a network of warning sirens, typically at the top of the cliff of surroundings hills. The  Pacific Tsunami Warning System  is based in  Honolulu,  Hawaii. It monitors Pacific Ocean seismic activity. A sufficiently large earthquake magnitude and other information trigger a tsunami warning. While the seduction zones around the Pacific are seismically active, not all earthquakes generate tsunami. Computers assist in analyzing the tsunami risk of every earthquake that occurs in the Pacific Ocean and the adjoining land masses. |[pic] |[pic] |[pic] |[pic] | |Tsunami hazard sign |A tsunami warning sign on |The monument to the victims of |Tsunami memorial | |atBamfield,  British Columbia |a  seawall  in  Kamakura, Japan, |tsunami at Laupahoehoe,  Hawaii |inKanyakumari  beach | | |2004. | | | As a direct result of the Indian Ocean tsunami, a re-appraisal of the tsunami threat for all coastal areas is being undertaken by national governments and the United Nations Disaster Mitigation Committee. A tsunami warning system is being installed in the Indian Ocean. Computer models can predict tsunami arrival, usually within minutes of the arrival time. Bottom pressure sensors relay information in real time. Based on these pressure readings and other seismic information and the seafloor’s shape and coastal  topography, the models estimate the amplitude and surge height of the approaching tsunami. All Pacific Rim countries collaborate in the Tsunami Warning System and most regularly practice evacuation and other procedures. In Japan, such preparation is mandatory for government, local authorities, emergency services and the population. Some zoologists hypothesize that some animal species have an ability to sense subsonic  Rayleigh waves  from an earthquake or a tsunami. If correct, monitoring their behavior could provide advance warning of earthquakes, tsunami etc. However, the evidence is controversial and is not widely accepted. There are unsubstantiated claims about the Lisbon quake that some animals escaped to higher ground, while many other animals in the same areas drowned. The phenomenon was also noted by media sources in  Sri Lanka  in the  2004 Indian Ocean earthquake. [21][22]  It is possible that certain animals (e. g. ,  elephants) may have heard the sounds of the tsunami as it approached the coast. The elephants’ reaction was to move away from the approaching noise. By contrast, some humans went to the shore to investigate and many drowned as a result. It is not possible to prevent a tsunami. However, in some tsunami-prone countries some  earthquake engineering  measures have been taken to reduce the damage caused on shore. Japan  built many tsunami walls of up to 4. 5  metres (15 ft) to protect populated coastal areas. Other localities have built  floodgates  and channels to redirect the water from incoming tsunami. However, their effectiveness has been questioned, as tsunami often overtop the barriers. For instance, the  Okushiri, Hokkaido tsunami  which struck  Okushiri Island  of  Hokkaido  within two to five minutes of the  earthquake on July 12, 1993  created waves as much as 30  metres (100 ft) tall—as high as a 10-story building. The port town of Aonae was completely surrounded by a tsunami wall, but the waves washed right over the wall and destroyed all the wood-framed structures in the area. The wall may have succeeded in slowing down and moderating the height of the tsunami, but it did not prevent major destruction and loss of life. [23] Natural factors such as shoreline tree cover can mitigate tsunami effects. Some locations in the path of the 2004 Indian Ocean tsunami escaped almost unscathed because trees such as  coconut palms  and  mangroves  absorbed the tsunami’s energy. In one striking example, the village of  Naluvedapathy  in India’s  Tamil Nadu  region suffered only minimal damage and few deaths because the wave broke against a forest of 80,244 trees planted along the shoreline in 2002 in a bid to enter the  Guinness Book of Records. [24]  Environmentalists have suggested tree planting along tsunami-prone seacoasts. Trees require years to grow to a useful size, but such plantations could offer a much cheaper and longer-lasting means of tsunami mitigation than artificial barriers. The Love Canal chemical waste dump In 1920 Hooker Chemical had turned an area in Niagara Falls into a municipal and chemical disposal site. In 1953 the site was filled and relatively modern methods were applied to cover it. A thick layer of impermeable red clay sealed the dump, preventing chemicals from leaking out of the landfill. A city near the dumpsite wanted to buy it for urban expansion. Despite the warnings of Hooker the city eventually bought the site for the meager amount of 1 dollar. Hooker could not sell for more, because they did not want to earn money off a project so clearly unwise. The city began to dig to develop a sewer, damaging the red clay cap that covered the dumpsite below. Blocks of homes and a school were built and the neighborhood was named Love Canal. Love Canal seemed like a regular neighborhood. The only thing that distinguished this neighborhood from other was the strange odors that often hung in the air and an unusual seepage noticed by inhabitants in their basements and yards. Children in the neighborhood often fell ill. Love Canal families regularly experienced miscarriages and birth defects. Lois Gibbs, an activist, noticed the high occurrence of illness and birth defects in the area and started documenting it. In 1978 newspapers revealed the existence of the chemical waste dump in the Love Canal area and Lois Gibbs started petitioning for closing the school. In August 1978, the claim succeeded and the NYS Health Department ordered closing of the school when a child suffered from chemical poisoning. When Love Canal was researched over 130 pounds of the highly toxic carcinogenic TCDD, a form of dioxin, was discovered. The total of 20. 00 tons of waste present in the landfill appeared to contain more than 248 different species of chemicals. The waste mainly consisted of pesticide residues and chemical weapons research refuse. The chemicals had entered homes, sewers, yards and creeks and Gibbs decided it was time for the more than 900 families to be moved away from the location. Eventually President Carter provided funds to move all the families to a safer area. Hooker†™s parent company was sued and settled for 20 million dollars. Despite protests by Gibbs’s organization some of the houses in Love Canal went up for sale some 20 years later. The majority of the houses are on the market now and the neighborhood may become inhabited again after 20 years of abandonment. The houses in Love Canal are hard to sell, despite a renaming of the neighborhood. It suffered such a bad reputation after the incident that banks refused mortgages on the houses. None of the chemicals have been removed from the dumpsite. It has been resealed and the surrounding area was cleaned and declared safe. Hooker’s mother company paid an additional 230 million dollars to finance this cleanup. They are now responsible for the management of the dumpsite. Today, the Love Canal dumpsite is known as one of the major environmental disasters of the century. **** Love Canal is an abandoned canal in Niagara County, New York, where a huge amount of toxic waste was buried. The waste was composed of at least 300 different chemicals, totaling an estimated 20,000 metric tons. The existence of the waste was discovered in the 1970s when families living in homes subsequently built next to the site found chemical wastes seeping up through the ground into their basements, forcing them to eventually abandon their homes. Love Canal was used from the 1940s through the 1950s by the Hooker Chemical Company and the city of Niagara Falls, among others, to dispose of their hazardous and municipal wastes and other refuse. The canal was surrounded by clay and was thought at the time to be a safe place for disposal—and, in fact, burying chemicals in the canal was probably safer than many other methods and sites used for chemical disposal at the time. In 1953, the Niagara Falls Board of Education bought the land-fill for $1 and constructed an elementary school with playing fields on the site. Roads and sewer lines were added and, in the early 1970s, single-family homes were built adjacent to the site. Following a couple of heavy rains in the mid-1970s, the canal flooded and chemicals were observed on the surface of the site and in the basements of houses abutting the site. Newspaper coverage, investigations by the State of New York and by the U. S. Environmental Protection Agency, combined with pressure from the district’s U. S. congressional representative and outrage on the part of local residents, led to the declaration of a health emergency involving â€Å"great and imminent peril to the health of the general public. Ultimately, in August, 1978, a decision was made by Governor Hugh Carey, supported by the White House, to evacuate the residents and purchase 240 homes surrounding the site. Shortly thereafter, the residents of nearby homes that did not immediately abut the site also became concerned about their health and conducted a health survey that purported to show an increase in the occurrence of various diseases and problems such as birth defects and miscarriages, which were attributed to chemical exposures. A great controversy ensued over whether the observations were real or reflected normal rates of such problems, and whether chemical exposures had, in fact, occurred. Eventually, political pressure resulted in families being given an opportunity to leave and have their homes purchased by the State. About 70 homes remained occupied in 1989 by families who chose not to move. The controversy at Love Canal followed on the heels of the heightened awareness that occurred in the 1960s about environmental contamination, and it contributed to public and regulatory concern about hazardous wastes, waste disposal, and disclosure of such practices. Such concerns led Congress to pass the Resource Conservation and Recovery Act (RCRA) and the Toxic Substances Control Act (TSCA) in 1976, and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), also known as the Superfund bill, in 1980. When CERCLA was passed, few were aware of the extent of the problem potentially created by years of inappropriate or inadequate hazardous waste disposal practices. Since implementing CERCLA, the U. S. Environmental Protection Agency has identified more than 40,000 potentially contaminated â€Å"Superfund† sites. The Gulf War In August 1990 Iraqi forces invaded Kuwait, starting the Gulf War in which an allegiance of 34 nations worldwide was involved. In January  1991  of the Gulf War, Iraqi forces committed two environmental disasters. The first was a major oil spill 16 kilometers off the shore of Kuwait by dumping oil from several tankers and opening the valves of an offshore terminal. The second was the setting fire to 650 oil wells in Kuwait. The apparent strategic goal of the action was to prevent a potential landing by US Marines. American air strikes on January 26 destroyed pipelines to prevent further spillage into the Gulf. This however seemed to make little difference. Approximately one million tons of crude oil was already lost to the environment, making this the largest oil spill of human history. In the spring of 1991, as many as 500 oil wells were still burning and the last oil well was not extinguished until a few months later, in November. The oil spills did considerable damage to life in the Persian Gulf (see picture). Several months after the spill, the poisoned waters killed 20. 000 seabirds and had caused severe damage to local marine flora and fauna. The fires in the oil wells caused immense amounts of soot and toxic fumes to enter the atmosphere. This had great effects on the health of the local population and biota for several years. The pollution also had a possible impact on local weather patterns. How to cite Tsunami and Love Canal, Papers

Saturday, December 7, 2019

Dancing at Lughnasa Essay Example For Students

Dancing at Lughnasa Essay Dancing at Lughnasa, a play written by Brian Frier, is a depiction of a mans memory of his childhood. The narrator, Michael, takes us back to the warm harvest days of August 1936, when he was a seven-year-old boy being brought up by his unmarried mother Chris and her four sisters. The play, through Michaels narration, touches on different aspects of life of the characters by exploring the occurrence of simple events which contribute an impact to their relationships. However, Michael, as a chorus figure, plays the most significant role which affects our perception of the events which unfold. The play opens up with Michaels first speech. When I cast back my mind to that summer of 1936- We see an apparent reflection of the memory through his language. This phrase is repeatedly mentioned in his first speech which reinforces the notion of reminiscing the past. On the other hand, we see as well how Frier distances Michael from the past events through a careful use of words. The word cast in his the first phrase gives an impression that he is trying to detach his memory from him and when he say cast back, it implies how he retraces back his memory without taking part in the past events. He is recollecting the past but not re-living it. This is evidently conveyed by the author for his main purpose of using Michael is as an observer of the present who oversees and judges the lives of the characters from the past. Therefore we see a sort of detachment and distancing of this personage from the events that he is recollecting. Through this technique, Michael appears like an omniscient narrator (although he is not) and this gives an impression that we are discovering the characters and the events at the same as the narrator. Although Michael is involved in these events, the narrative point of view could be qualified as a third-person limited. Frier doesnt really give him an access to the characters thoughts or to what they do in private since he only re-tells a story that he witnessed when he was a child. This method is important because it allows the narrator to assess the events in an adults point of view and this is one of his main functions as a chorus-figure which we will explore later on. Another remarkable linguistic aspect of this speech is that it is characterised by a lyrical tone. The choice of this tonality is important in order to remind us of the notion of musicality and the idea of dance. The tone is very comforting but at the same time it creates a nostalgic atmosphere and the tone itself seems to distance us from the characters being introduced. Frier applies the flashback technique by using Michaels memory to simply separate two elements of his character he detaches the adult Michael from Michael the boy. This explains why the whole play has no plot at all. The narrator relates a story of what he witnessed when he was seven therefore he is relating his memory in an objective manner which simply imply that during that summer of 1936, he did not really have a complete and a deeper understanding of those events. He is narrating a story according to how things had happened exteriorly. This explains as well his absence throughout the play for the reason that he hides and observe everybody as if it is his main preoccupation. for the first time in my life I had a chance to observe him(his father), It had fallen out of Aunt Kates prayer book and she snatched it from me before I could study it in detail. Since the play echoes Michaels memory as a boy, this answers the flatness of the plot. There is no climax in the play and it almost lacks colour and other ingredients that could make the story attractive. This parallels to the boys innocence which is a barrier that separates him from the interior side of the characters. There is nothing spectacular that happens in the play and all the events are stagnant. The childish memory shows us the slow and constant rhythm of their everyday life. We see how theyre engaged to simple things like making tea, knitting gloves, picking blackberries or feeding their pets. There is no apparent development of the characters. Romeo and Juliet - Act 3 Scene 1 EssayHowever, having a complete knowledge of the play, the image of these women dancing and catching hands make our sympathy increase for them.. We see them like a chain which will later on disintegrate into small pieces. There are also symbolism that Frier evokes in the play. Michael narrates this one particular moment because it is the final celebration of these women dancing before it changed forever. It was the moment of a new beginning for him as a boy for it was in this summer that he discovered events and felt something for the first time. In his speech, he uses words like, first wireless, August was about to begin, my Uncle Jack, came home from Africa for the first time, I recall my first shock at Jacks appearance, I remember my first delight and for the first time of my life I had a chance to observe him (his father). However, this particular moment represent as well the path leading to their fate the disintegration one be one of the characters. In one part, the play ends with all the characters similar to their position in the beginning of the play. This tableau image signifies how Michael sees his family as he casts back his mind in that summer of 1936. Since for him, it was the beginning and the end, he tries to preserve these freeze characters in his memory. The kite in the play symbolically represents Michael. He is the outsider trapped in a world of women when he was seven. He even distances himself as he narrates this story. However, like a kite, although he is detached from the whole events that occurred, there is still something that attaches him to this particular moment. His memory is comparable to the chord of the kite that connects him to the past. On the other hand, the swaying of this kite reminds us again of the notion of dancing which symbolises the escape for the five women. It is their only way out to release the tensions and pressures imposed by religion and duty. Frier uses Michael to symbolically give a spirit and a life to this plotless play. The lack of plot is supported by the intervals between monologues and dialogues. It is actually through Michaels speech that we feel for the characters. His words are almost representing an explosion of emotions for it is through his speeches that we begin to feel something. It is through him that we discover what happened to Rose and Agnes and that he has a half-brother. However, there is an existing metaphoric symbolism of Michaels role and the other characters representation in the play. The play could symbolise the dance without a melody and Michael, by remembering the past and assessing the whole events through his analytical point of view, gives the rhythm and the harmonious melody to this dance. We observe how the play is almost like a pantomime because the actual text of the play seems to be lacking paralleling the lack of plot. Frier wants to show that words arent really the voice of the truth and that the actions speak louder than words. dancing as if language no longer existed because words were no longer necessary. But we could also view this symbolism in a different way. The whole book is almost like a song that convey several themes. The relationship between the five sisters and the male characters, Jack and Jerry, symbolise seven different notes (do re mi fa sol la ti) that are interrelated to each other creating a melodious harmony. However, to give a spirit to this melody, Michael symbolises the lyrics which gives the life to this song. This is reflected on his liyrical tone. Like the words of a song, he intervenes and overlaps on some of the scene just as how lyrics overlaps on some of the part of a song. And as the characters disappear one by one at the end, the song loses its notes and melodious elements which imply the disintegration of the sisters. Now fade in very softly, just audible, the music It is time to say Goodnight.